| Home | E-Submission | Sitemap | Editorial Office |  
top_img
Radiation Oncology Journal Search > Browse Articles > Search



Supervised deep learning-based synthetic computed tomography from kilovoltage cone-beam computed tomography images for adaptive radiation therapy in head and neck cancer
Chirasak Khamfongkhruea, Tipaporn Prakarnpilas, Sangutid Thongsawad, Aphisara Deeharing, Thananya Chanpanya, Thunpisit Mundee, Pattarakan Suwanbut, Kampheang Nimjaroen
Radiat Oncol J. 2024;42(3):181-191.   Published online 2024 May 30     DOI: https://doi.org/10.3857/roj.2023.00584
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
1 |
E-Submission
Principles of Transparency and Best Practice
Author's Index
KOSRO
Journal Impact Factor 1.8
SCImago Journal & Country Rank
PubMed Central
PubMed
Scopus
KoreaMed
KoMCI
ScienceCentral
GoogleScholar
Similarity Check
Crossref Cited-by Linking
CrossMark
Funder Registry
Metadata
ORCID
COPE
Elekta Korea
DAWON MEDAX
Editorial Office
Department of Radiation Oncology, Samsung Medical Center,
Proton Therapy Center, B2, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
Tel : +82-2-3410-3617
E-mail: rojeditor@gmail.com, roj@kosro.or.kr
Copyright © The Korean Society for Radiation Oncology.                      Developed in M2PI
Close layer
prev next