| Home | E-Submission | Sitemap | Contact Us |  
J Korean Soc Ther Radiol Oncol > Volume 19(2); 2001 > Article
The Journal of the Korean Society for Therapeutic Radiology and Oncology 2001;19(2): 153-162.
A Study on Apoptotic Signaling Pathway in HL-60 Cells Induced by Radiation
Hye Jung Kim, Sung Keun Moon, Jae Hoon Lee, Sun Rock Moon
1Medical Science Institute, Wonkwang University School of Medicine, Iksan, Korea.
2Department of Radiation Oncology, Wonkwang University School of Medicine, Iksan, Korea.
The mechanical insights of death of cancer cells by ionizing radiation are not yet clearly defined. Recent evidences have demonstrated that radiation therapy may induce cell death via activation of signaling pathway for apoptosis in target cells. This study is designed whether ionizing radiation may activate the signaling cascades of apoptosis including caspase family cysteine proteases, Bcl2/Bax, cytochrome c and Fas/Fas-L in target cells.
HL-60 cells were irradiated in vitro with 6 MV X-ray at dose ranges from 2 Gy to 32 Gy. The cell viability was tested by MTT assay and the extent of apoptosis was determined using agarose gel electrophoresis. The activities of caspase proteases were measured by proteolytic cleavages of substrates. Western blot analysis was used to monitor PARP, Caspase-3, Cytochrome-c, Bcl-2, Bax, Fas and Fas-L.
Ionizing radiation decreases the viability of HL-60 cells in a time and dose dependent manner. Ionizing radiation-induced death in HL-60 cells is an apoptotic death which is revealed as characteristic ladder-pattern fragmentation of genomic DNA over 16 Gy at 4 hours. Ionizing radiation induces the activation of caspase-2, 3, 6, 8 and 9 of HL-60 cells in a time-dependent manner. The activation of caspase-3 protease is also evidenced by the digestion of poly (ADP-ribose) polymerase and procaspase- 3 with 16Gy ionizing irradiation. Anti-apoptotic Bcl2 expression is decreased but apoptotic Bax expression is increased with mitochondrial cytochrome c release in a time- dependent manner. In additon, expression of Fas and Fas-L is also increased in a time dependent manner.
These data suggest that ionizing radiation-induced apoptosis is mediated by the activation of various signaling pathways including caspase family cysteine proteases, Bcl2/Bax, Fas and Fas-L in a time and dose dependent manner.
Key Words: HL-60, Apoptosis, Radiation
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
CrossRef TDM  CrossRef TDM
Related article
Editorial Office
Department of Radiation Oncology, Seoul National University Hospital,
Hamchun Hall, 6F, 95 Daehak-ro, Jongno-gu, Seoul 03082, Republic of Korea
Tel : +82-2-743-6574
E-mail: roj@kosro.or.kr
Copyright © The Korean Society for Radiation Oncology.                      Developed in M2PI
Close layer
prev next