| Home | E-Submission | Sitemap | Contact Us
top_img
J Korean Soc Ther Radiol > Volume 9(1); 1991 > Article
Journal of the Korean Society for Therapeutic Radiology 1991;9(1): 131-142.
Characteristics of 15 MV Photon Beam from a Varian Clinac 1800 Dual Energy Linear Accelerator
Kye Jun Kim, Jong Young Lee, Kyung Ran Park
Department of Radiation Oncology, Yonsei University, Wonju College of Medicine, Wonju, Korea.
ABSTRACT
A comprehensive set of dosimetric measurements has been made on the Varian Clinac 1800 15 MV photon beam. Beam quality percentage depth dose, dose in the build up region, output, symmetry and flatness, transmission through lead (Cerrobend), tray attenuation, isodose curves for the open and wedged fields were measured using 3 dimensional water phantom dosimetry system (including film densitometer system) and polystryrence phantoms. These dosimetric measurements sufficiently characterized the beam to permit clinical use. The depth dose characteristics of photon beam is dmax of 3.0 cm and percentage depth dose of 76.8% at 10 cm, 100 cm source-surface distance, field size of 10 x 10 cm2 for 15 MV X-ray beam. The Output factors ranged 0.927 for 4 X 4 cm2 field to 1.087 for 35 X 35 cm2 field. The build-up level of maximum dose was at 3.0 cm and surface dose was approximately 15.5% for a field size 10 x 10 cm2 . The stability of output is within+/-1% and flatness and symmetry are within+/-3%. The half value thickness (HVL) of lead is 13 mm, which corresponds to an attenuation coefficient of 0.053 mm-1. These figures compare favorably with the manufacturer's specifications.
Key Words: 15 MV Photon Beam, Linear Accelerator, Beam Quality, Depth Dose, Tissue-Phantom Ratio
Editorial Office
Department of Radiation Oncology,
Samsung Medical Center, Sungkyunkwan University School of Medicine,
81 Irwon-Ro, Gangnam-gu, Seoul 06351, Korea
TEL: +82-2-3410-2612  E-mail: rojeditor@gmail.com
Copyright © The Korean Society for Radiation Oncology. All rights reserved.                      developed in m2community
Close layer
prev next